Name	Date

LAB 4G: Growing trees Response Sheet

Directions: Record your responses to the lab questions in the spaces provided.

- 1	rΔ	20	VS.	 nas	2

Our first tree

• Why can't we just use a *linear model* to predict whether a passenger on the Titanic survived or not based on their gender?

Viewing trees

- · Write down the labels of the two branches.
- Write down the labels of the two leaves.

Answer the following, based on the treeplot:

- Which gender does the model predict will survive?
- Where does the plot tell you the number of people that get sorted into each leaf? How do you know?
- Where does the plot tell you the number of people that have been sorted incorrectly in each leaf?

Name		Date	
	LAB 4G: Growing tree	es	

Response Sheet

Leafier trees

Create a treeplot for this model and answer the following question:

- Mrs. Cumings was a 38-year-old female with a 1st class ticket from Cherbourg. Does the model predict that she survived?
- · Which variable ended up not being used by tree?

Tree complexity

How is tree3 different from tree2?

Predictions and Cross-validation

Measuring model performance

· Where does the first misclassification occur?

Misclassification rate

On your own

• In your own words, explain what the misclassification rate is.

- Which model (tree1, tree2 or tree3) had the lowest misclassification rate for the titanic_test data?
- Does creating a more complex classification tree always lead to better predictions? Why not?